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The problem of acoustic radiation generated by instability waves of a compressible 
plane turbulent shear layer is solved. The solution provided is valid up to the acoustic 
far-field region. It represents a significant improvement over the solution obtained 
by classical hydrodynamic-stability theory which is essentially a local solution with 
the acoustic radiation suppressed. The basic instability-wave solution which is valid 
in the shear layer and the near-field region is constructed in terms of an asymptotic 
expansion using the method of multiple scales. This solution accounts for the effects 
of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic 
expansion is not uniformly valid far from the shear layer. Continuation of this solution 
into the entire upper half-plane is described. The extended solution enables the near- 
and far-field pressure fluctuations associated with the instability wave to be deter- 
mined. Numerical results show that the directivity pattern of acoustic radiation into 
the stationary medium peaks a t  20 degrees to the axis of the shear layer in the down- 
stream direction for supersonic flows. This agrees qualitatively with the observed 
noise-directivity patterns of supersonic jets. 

1. Introduction 
This paper considers the radiation of sound associated with an artificially-excited 

spatially-growing instability wave of a fixed frequency, in a plane turbulent shear 
layer. This work is an outgrowth of the authors’ effort to understand the mechanisms 
of jet-noise generation. During the past few years a number of investigators, e.g. 
Sedel’nikov (1967), Tam (1971, 1972, 1975), Bishop, Ffowcs Williams & Smith (1971), 
Morris (1974) and Liu (1974) suggested that flow instabilities could play a very 
important role in supersonic jet-noise generation. This idea was confirmed in a series 
of experiments by McLaughlin, Morrison & Troutt (1975, 1977) using supersonic jets 
with low to moderately-high Reynolds numbers. To facilitate experimental measure- 
ments of the relative phase of the instability waves a t  different locations in the jet, 
the jet was gently excited by glow discharge a t  the nozzle exit a t  certain selected 
frequencies. Hot-wire and microphone measurements indicated the presence of 
spatially-growing flow instability waves together with strong noise radiation a t  che 
forced frequencies. The experimental situation just described is quite similar to the 
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model problem under consideration in this paper. For cold subsonic jets no direct 
experimental evidence is available a t  this time to show whether the same mechanism 
is important in producing noise. For a heated subsonic jet with exit Mach number 
0.7 and exit temperature 900K,  Dahan & alias (1976) determined that noise was 
radiated from large-scale motions of the jet which had the local characteristics of 
wavelike instabilities of the jet. Chan (1974a, b ;  1976) and Moore (1977) have demon- 
strated that it is possible to excite instability waves in the shear layer of a turbulent 
subsonic jet. Further, when the amplitudes of the excited waves were small, they 
found that most of their characteristics agreed quite well with the predictions of 
classical linear inviscid hydrodynamic-instability theory. In  recent years a number 
of workers have examined the jet flow or free shear-layer instability problem. Some 
of the more recent works, such as those by Morris (1974, 1976a, 1977), Liu (1974), 
Tam (1975), Chan (1975), Merkine & Liu (1975), and others emphasized the slight 
nonlinear aspects of the problem. On the other hand, a number of papers such as those 
by Bouthier (1972, 1973), Gaster (1974), Saric & Nayfeh (1975) and Crighton & 
Gaster (1976) discuss the modification to classical instability theory due to slight flow 
divergence which is inevitable in unbounded shear flows. In all these works, with the 
exception of Tam (1975) and Morris (1976a), no attempt was made to calculate the 
sound waves generated by the flow instabilities. Tam (1975) used physical reasoning 
to model the noise generation processes for supersonic jets and estimated the noise 
emitted. Unlike most of the works cited above, the sound radiation problem is the 
main question to be addressed here. In  this paper the instability wave solution, which 
is valid in the shear layer and a near-field region, is constructed in terms of an asymp- 
totic expansion using the method of multiple scales. This solution accounts for the 
effects of the slightly divergent mean flow. The instability-wave amplitude is assumed 
to be small so that nonlinear effects are ignored. In  fact, even if its amplitude is not 
small, the nonlinear effects are only important inside the shear layer. In  this case 
the present method still applies if the instability wave solution in the shear layer is 
appropriately modified. Classical hydrodynamic instability theory (see Lees & Lin 
1946; Lin 1953; Gropengieser 1969; Blumen 1970, 1971) of a compressible plane 
mixing layer does not predict acoustic radiation. A closer examination of this solution 
(see 3 2.3) reveals that it is a local solution and is valid only up to a limited region 
outside the shear layer. The solution presented in this paper, however, has uniform 
validity up to the acoustic far-field region. 

In  classical hydrodynamic instability theory of compressible flows such as boundary 
layers or free-shear layers, the parallel-flow approximation is invariably used. Because 
of this, the instability wave solution so obtained is valid only over a localized region. 
To determine the sound radiation associated with an instability wave, a global solution 
of the total wave propagation phenomenon is necessary. In  a two-dimensional shear 
layer, because of entrainment, the mean flow diverges in the downstream direction. 
As a result the instability characteristics of the shear layer vary continuously from 
point to point in the streamwise direction. When an instability wave is initiated at  a 
certain location of the flow by periodic external excitation, it will first undergo a 
rapid spatial growth. As the shear layer thickens, the growth rate decreases until 
finally the wave will reach a region where the shear layer is too thick to support an 
unstable wave at  the forced frequency. Downstream of this region the wave will be 
damped. Its amplitude decreasesasit continues to propagate untilit is vanishingly small 
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Except in the case of very-high-speed flow, the phase velocity of the instability wave 
is usually subsonic relative to the stationary ambient gas. A subsonic wave with 
constant amplitude generates no sound. However, if the wave amplitude grows and 
decays spatially then some wave components would actually be moving with super- 
sonic phase velocity which, as is well known, would lead immediately to acoustic 
radiation. Thus for the problem under consideration, the classical instability theory 
must be modified to allow for the phenomenon of mean-flow divergence and provide 
a description of the growth and decay of the excited instability wave. 

Following the above reasoning a solution is first found for the instability wave in 
the shear layer. This solution is constructed using the method of multiple scales. The 
procedure adopted is very similar to the method of Saric & Nayfeh (1975). HerePeces- 
sary modifications to  deal with the singular behaviour of the damped inviscid eigen- 
functions by contour deformation in the complex plane are made. (The damped 
inviscid eigensolutions are discussed in appendix B and are shown in $4.2 to be a 
valid approximation to the damped viscous solutions a t  high Reynolds number.) A 
fast and a slow spatial variable are introduced in the analysis. The slow variable is 
used to  take into account the gradual divergence of the mean flow. The fast variable 
is the same one as used in the hydrodynamic instability theory. The higher-order 
terms in the multiple-scales expansion are obtained using the method of variation of 
parameters. Examination of these terms reveals that  the multiple-scales asymptotic 
expansion is not uniformly valid far from the shear layer. It is thus argued that the 
present perturbation problem is singular. An extended solution which is a uniformly- 
valid asymptotic expansion for large distances from the shear layer is constructed by 
showing that a model boundary-value problem, for which a uniformly-valid expansion 
exists, is the continuation of the instability wave solution. The solution of this problem 
which provides the pressure fluctuations associated with the instability wave in the 
far field, is obtained by the method of Fourier transforms. The noise radiation is then 
readily calculated. 

Before proceeding with the analysis and calculations it is felt to  be useful, in view 
of the many separate steps that constitute the analysis, to provide a description of the 
mathematical strategy to be followed in the following sections. Section 2 develops the 
instability wave solution using the method of multiple scales. The solution of the 
eigenvalne problem, formed by the equation for the zeroth-order terms in the multiple- 
scales expansion and their boundary conditions, is provided in $ 2.1. This enables the 
pressure fluctuation to  be defined completely to order unity. Higher-order terms in 
the multiple-scales expansion are derived in $2.2 using the method of variation of 
parameters. The analytical form of these higher-order terms may be obtained in the 
uniform mean-flow region outside the shear layer. This analysis, given in $2.3, shows 
that the multiple-scales asymptotic expansion is not uniformly valid a t  large distances 
from the edge of the shear layer. I n  $ 3  a method is described which enables the 
solution for the instability wave to be continued into the region outside the shear layer. 
The necessary properties of this solution, referred to as the extended solution, are 
developed first. This extended solution is shown to be identical to a selected boundary- 
value problem in § 3.1. This identity is achieved by matching the boundary-value 
problem’s boundary condition to the properties of the instability wave solution in a 
region close to  the edge of the mixing layer. A uniformly-valid asymptotic expansion 
for the extended problem is obtained in $ 3.2 using the method of Fourier transforms. 
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FIGURE 1.  Plane shear-layer flow. 

This enables the sound radiation associated with the instability wave to be calculated. 
The far-field solution associated with the multiple-scales asymptotic solution for the 
instability wave is evaluated in 5 3.3  using the method of stationary phase. 

I n  5 4 of this paper the method outlined above is applied to the acoustic radiation 
problem associated with an instability wave in a plane turbulent shear layer. Experi- 
mental measurements show that the mean velocity profile of the flow can be approxi- 
mated by a complementary error funct,ion. Numerical results for the inviscid instability 
characteristics of the shear layer including local growth rate and wavenumber with 
or without divergent flow corrections are presented a t  several Mach numbers. Direc- 
tivity patterns of acoustic radiation a t  subsonic and supersonic flow Mach numbers 
are also presented in this section. Because of flow similarity (there is a lack of intrinsic 
length and time scales in this free shear-layer problem) the directivity pattern is not 
sensitive to the frequency of the wave except in the extremely-high-frequency range. 
For supersonic flows the noise radiation peaks around 20 degrees to the axis of the 
shear layer in the ambient medium. This is qualitatively consistent with the experi- 
mental observations of Dosanjh & Yu (1968) for a turbulent supersonic jet. Further 
discussion of the numerical results in relation to  jet noise radiation will be given at 
the end of this paper. 

2. The multiple-scales instability-wave solution 
The behaviour of small wave-like disturbances propagating in a pre-existing plane 

turbulent shear layer will be considered. These disturbances are assumed to be 
induced by a localized external periodic excitation of frequency w * .  The basic flow is 
sketched in figure 1 .  The turbulent mixing layer has a small initial thickness, S,* at 
x" = xc which takes account of the boundary layer on the splitter plate. The mixing 
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layer has a constant rate of spread which will be assumed to be a known function of 
the free-stream Mach number, M .  The static pressure and temperature will be assumed 
constant throughout the flow. This condition, which is physically realistic for an 
appropriately-heated uniform stream up to Mach numbers of close to two, may easily 
be relaxed. Since the mean velocity profile has characteristics which lead to dynamic 
instabilities of small perturbations, even in the absence of viscosity, the wavelike 
disturbances will be assumed to satisfy the linearized, inviscid, compressible equations 
of motion. To describe properly the behaviour of the excited periodic disturbances in 
the shear layer, it is important to  take account of the divergence of the mean flow. 
Since the spreading rate of the mixing layer is small, especially a t  high free-stream 
l\lach numbers, the method of multiple scales will be used to describe the disturbance 
behaviour. The governing equations are the linearized continuity, momentum and 
energy equations together with the equation of state. 

All the physical variables are non-dimensionalized with respect to the corresponding 
free-stream quantities, such as the free-stream velocity U*, density j i * ,  pressure ?*, 
and the initial thickness of the mixing layer 8:. The appropriate time scale is a,*/.*. 
The governing linearized equations of motion can readily be reduced to 

and 

where primes denote fluctuating quantities and y is the ratio of specific heats. The 
two-dimensional turbulent mean flow is a function of the transverse co-ordinate y, 
and a slowly varying function of axial distance x. Measured mean flow profiles will 
be used. From the measurements of Liepmann & Laufer (1947)  the mean velocity 
vector may be written as 

6 = [U(y/s), SV(Y/S), 01, ( 2 . 3 ~ )  

where U = O  for y <  - y n ,  

for y 2 ym.  (2 .3b)  

I n  equations ( 2 . 3 a ,  b )  s = ex, where the small parameter e is a measure of the rate of 
spread of the shear layer. Typically e is less than 0.1. The mean velocity in the x 
direction is effectively zero below the mixing layer and the flow is uniform for y 2 ym 
as shown in figure 1 .  A solution will be sought to equations ( 2 . 1 )  and ( 2 . 2 )  in the form 
of a slowly-varying wave 

and 

( 2 . 4 ~ )  

(2 .4b )  

( 2 . 4 ~ )  

where w is the forced frequency of the wave and the fast phase fumtion, 0, is such that 

d e / d x  = a(s) .  (2 .5)  
I2 FLM 9a 
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This form of multiple-scales asymptotic expansion has been used previously by Saric 
& Nayfeh (1975)  in their investigation of the non-parallel stability of boundary-layer 
flows. Substitution of (2 .4 )  into (2 .1 )  and (2 .2)  and ordering the equations in powers 
of E gives, to order unity, 

- iij% + y(iaa, + ae,/ay) = 0, (2.6a) 

yM2(0, aU& - i0t2,} = - ia$o, (2 .6b)  

and i y ~ 2 0 3 ,  = a$,/ay, ( 2 . 6 ~ )  

where 0 = w - a u .  

These equations readily reduce to a single equation for 9, of the form 

( 2 . 7 a )  

which will be written as L," = 0. (2 .7b )  

To order E a set of inhomogeneous equations for the fluctuations $,, a, and 0, are 
obtained where the right-hand sides are functions of the zeroth-order fluctuations. 
These equations may be reduced to a single inhomogeneous equation for @, of the 
form 

0 3  ay a9 ds 
L,[$,] = - 2 i ( M 2 U 0 + a ) - + - -  -+i M2U2$0-$oi--  -- - a$, 2iw au a2fio 

as 0 2  ay ayas 

w v a u  4 a 2 a v  

0 2  ay w ay 
+i(- -+--;;---aM2 

Similarly the higher-order equations lead to inhomogeneous equations for $, of the 
form 

L,[$nl = Xn(y,s),  = 1, 2 , 3 ,  * . .  (2 .9)  

The inhomogeneous term xn contains fluctuation quantities of lower order. For 
y 3 y,,, the mean flow is uniform and X, takes a simple form. In  this region of uniform 
flow the value of xn will be denoted by X, which is given by 

da a'fJn-2 
'@,-I i( 1 - M2)-$,+-l - (1 - N 2 )  - 

ds as2 * 
zn($m-,, $,4) = - 2 i [M2(w - a) + a] - - 

as 
(2.10) 

(Note that in equation (2 .10 )  $-2 = $-, = 0 and zo = 0.) 

2.1.  The eigenvalue problem 

The amplitude and phase functions of the multiple-scales asymptotic expansion, 
equation (2 .4 )  are given by the solution to equations (2.7), (2 .8 )  and (2 .9 ) .  The appro- 
priate boundary conditions for $, are 

$, is bounded as y+ _+ co. (2.11) 

For convenience a new similarity co-ordinate is introduced given by 7 = y/s, and the 
mean velocity field is taken to be a function of 7 only. If a local wavenumber and 
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frequency in the form k, = as and p = ws are defined, then the pressure fluctuation 
may be written in terms of 7 and /? as 

@o(% P)  = A,(& P(7, P )  (2.12) 

and from equation (2.7) g(7, /?) satisfies the equation 

L,[Cl = 0, (2.13a) 

where (2.13 b )  

and /9 = P-k, U .  (2.13 c) 

The boundary conditions for p from equation (2.11) are 

p-+ 0 or bounded as 7 + co. (2.14) 

Equation (2.13) and boundary condition (2.14) form an eigenvalue problem. This is 
the identical problem that would have been obtained if the locally parallel flow 
approximation of classical hydrodynamic stability theory had been made. The eigen- 
value is ko. For y 3 ym equation (2.13) reduces to 

- a2t -[k;-M2(/?- 
k,)2] p = 0. (2.15) 

The solution of equation (2.15) which satisfies the boundedness condition is 

g = exp [ - (k; - M 2 ( p  - k,)2}iq] = exp [ - hy] ,  

where h = {a2-M2(o-a)2}i and Re{h} > 0. (2.16) 

A normalization convection will be adopted for the eigenfunctions p by choosing the 
arbitrary multiplication constant in front of the exponential function of equation 
(2.16) to be unity. Equations (2.4), (2.12) and (2.16) lead to 

p‘(x ,  y ,  t )  = A,(s) ei@(+-hg--iut+ O(e)  for y > 0 Ym. (2.17) 

Equation (2.8) may also be written in terms of the similarity co-ordinate. In order 
that a solution exists for the resulting equation it must satisfy the solvability con- 
dition; that is the inhomogeneous terms are orthogonal to every solution of the adjoint 
homogeneous problem [with an appropriate contour deformation in the 7 plane for 
damped waves (see appendix B and Q 4)]. That is, 

(2.18) 

where $(r ,p )  is the solution to the adjoint homogeneous equation. It is readily 
verified that $ = [ / p 2  so that equation (2.18) becomes, 

(2.19) 

This solvability condition leads to an ordinary differential equation for A,(/?) in the 
form, 

(2.20) 
dA 

1 3 ~ + ( 1 4 + 1 5 ) A o  = 0, 
a/? 

12-2 
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where 

and 

(2.21a) 

(2.21b) 

(2.21c) 

where the coefficients Bi are given in appendix A. Now with g(7,s) to be obtained 
from the eigenvalue problem of equations (2.13) and (2.14) and A,(s) to be found by 
integrating equation (2.20), the slowly varying wave solution in the form 

p’(x ,  y ,  t )  = A,(s) C(7, s) eie(+iwt + O(4,  (2.22) 

is completely defined to order unity. 
In  evaluating the integrals of equation (2.21) the values of dko/d/3 and aP/aP may 

be obtained using a finite-difference calculation based on the values of k,  and c at 
successive values of p. However, they may also be evaluated locally using the tech- 
nique employed by Bouthier (1  972, 1973) and Saric c% Nayfeh (1  975). Differentiating 
equation (2.13) with respect to ,8 gives an inhomogeneous equation for ac/a/3 of the 

(2.23) 
form 

where h, and h2 are given in appendix A. Application of the solvability condition to 
equation (2.23) leads to an equation for dk,/dp and the inhomogeneous equation for 
ac/a,8 may then be solved directly. 

L,[ac/apl = hl(dk,/dP) + h2, 

2.2. Higher-order terms of the multiple-scales asymptotic expansion 

The higher-order terms of the multiple-scales asymptotic expansion (2.4) are given 
by the solution of the inhomogeneous equations (2.9). Since the corresponding 
homogeneous equation has an eigensolution, c, each solution for f3n can be regarded 
as consisting of the sum of a particular solution and a complementary solution of the 
form An(s) P(y/s, s) where A ,  is an unknown amplitude. This unknown amplitude may 
be determined in similar manner to A ,  from the solvability condition applied to 
x ~ + ~  in equation (2.9) 

(2.24) 

The above solvability condition leads to an ordinary differential equation for A,. 
This equation can be integrated, at least numerically, so that the complementary 
solution is determined completely. The appropriate particular solutions may be 
obtained by the method of variation of parameters. For y 2 y,,, the eigenfunction g 
is given by equation (2.16). Another linearly independent solution of equation (2.15) is 

[ = exp [{k$ - M2(p - k,)2)t7] = eAu. (2.25) 

Now let [ ( y )  be the solution of (2.7) which takes the form given by (2.25) for y 2 ym. 
Then c (y )  and [(y) are two linearly independent solutions of the corresponding homo- 
geneous equation of (2.9). It may be shown readily that the U’ronskian W ( & [ )  is 

W([,  5)  = 2 h P / ( o  - a)2. (2.26) 
given by 
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Applying the method of variation of parameters (see Boyce & DiPrima 1977, ch. 3) 
to (2.9) using [ and [ as the fundamental set of solutions, the complete solution is 
found to be 

Using the explicit form of the Wronskian given in equation (2.26), equation (2.27) 
may be rewritten as 

(2.28) 

The pressure jj,(y, s) as given by equation (2.28) clearly satisfies the boundedness 
condition as y + - co. That the solution is bounded as y -+ + 00 is guaranteed by the 
solvability condition (2.24). The last term in (2.28) may be written in a more useful 
form using this solvability condition, that is, 

Equation (2.29) and the solvability condition (2.24) provide the complete solution 
of the amplitude functions of the slowly varying wave solution (2.4) t o  any order of 
the expansion parameter e. Unfortunately, as will be shown below, this multiple- 
scales asymptotic expansion has only a limited range of validity. 

2.3. The singular perturbation problem 

In this section it will be shown that the multiple-scales asymptotic expansion (2.4) 
is not uniformly valid for large y. The region y > ym, where the mean flow is uniform 
(i.e. U = 1, V = 0) ,  will be examined. In this region the inhomogeneous terms of (2.9) 
are given explicitly by (2.10). The functions g and [of (2.29) take the following simple 

(2.30) 
form y > ym, c = e--Ay, [ = eAg,  

so that the general expression for f jn  becomes 

Equation (2.31) gives the dependence of @, on y for y > ym. It holds for all values of R 

provided xo is taken to be zero. 
With 9, = A,c = A,exp ( - h y )  for y 2 ym the inhomogeneous term X1 may be 

computed from equation (2.10). This gives, 

= (C, + C2 y )  r A u ,  (2.32) 

where C, = - 2i[M2(w - a) + a] dA,/ds - i( 1 - M 2 )  A ,  da/ds 

and 
A da 
h ds' 

c2 = 2i[M2(w -a) + a122 - 
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Substitution of equation (2.32) into equation (2.31 a)  and evaluating the various 
integrals it is found that for y > ym 

$1 = ( 4 0  + Bll Y + B12 Y 2 )  e-Au, (2.33) 

where 

and c2 B - _ _  
12 - 4h‘ 

Now that $, and 
some computation it may be shown that, 

are determined i t  is possible to find j?i2 in the same manner. After 

132 = [B,, + B21 Y $- B22 Y2 + 4, Y3 + B24Y41 cA** (2.34) 

The expressions for the coefficients B2i are rather complicated and will not be written 
out. Only the dependence of the solution on y is of interest. By continuing this process 
or by mathematical induction it may be shown that, 

j3,, - B2$ 2n y2ne-Au as y + 00. (2.35) 

Thus for large y the multiple scales asymptotic expansion (2.4) behaves like, 
m 

n=O 
p’(x, y, t)  - C K ,  cny2ne--AU+i~(x)-i~t as y + co, (2.36) 

where K ,  are functions of x alone. Owing to the appearance of ~~y~~ exp [ - hy] in 
the higher-order terms, the asymptotic expansion does not hold for y 9 s-4. I n  other 
words the multiple-scales expansion is non-uniformly valid. As far as is known no 
single asymptotic expansion which is uniformly valid for all y can be constructed for 
the present problem. Van Dyke (1975) states on page 33 of his book La singular per- 
turbation problem is best defined as one in which no single asymptotic expansion is 
uniformly valid throughout the field of interest’. Thus the present perturbation 
problem is unfortunately singular. 

3. Continuation of the instability-wave solution into the region y > ym 

It is now necessary to construct an extension of the multiple-scales asymptotic 
expansion which is uniformly valid for y > ynL in the upper half plane. To do this 
it will be first determined what this extended solution ought to  satisfy. The disturb- 
ances associated with the instability wave are governed by the linearized continuity, 
momentum and energy equations and the equation of state, namely, equations (2.1) 
and (2.2).  These are, of course, the same equations that were used to determine the 
multiple-scales slowly-varying wave solution. However in the region y > ym, U is 
unity and V is zero so that these equations simplify to  

(3 . la)  

(3.lb) 

and 

y > y m ,  _ “ + s + y  aP 
at ax 

y M 2 ( $ + 2 )  = -az ape 

y M 2 ( x + z )  awe ave = -- ’Pe 
aY ‘ 

( 3 . 1 ~ )  
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The subscript e indicates that the variables are the extended solution in the region 
y > ym. Eliminating u, and v, from equation (3.1) the governing equation for p ,  is 
found to be 

The appropriate boundary condition for p ,  a t  large y is the radiation or boundedness 
condition 

(3.3) 

At this stage an inner boundary condition is needed for pe  in the region y slightly 
greater than ym. For the case E = 0 the multiple scales asymptotic expansion (2.4) 
truncates (only one term is needed for a truly parallel mean flow) so that the expansion 
converges for all values of y .  It will be assumed that the expansion also converges for 
some value of y slightly greater than y = yn, even when E has a small but finite value. 
If this convergence is realized then, by appealing to the concept of analytic continua- 
tion, the natural inner boundary condition for the extended solution p, is that i t  
must be identically equal to the convergent asymptotic expansion. Under these 
circumstances p ,  is the analytic continuation of p’. This leads to the inner boundary 
condition, 

y - f  co, p, is bounded or behaves like outgoing waves. 

W 

pe  = ( enPn(y, 8)) eie(x)-iwt (for y slightly greater than ym), (3.4) 
n=O 

wherep,(y, s ) ;  n = 0, 1,2 ,  . . . are given by equation (2.31). 

and inner boundary conditions (3.3) and (3.4) and be uniformly valid for all y > yn,. 
Summarizing, the extended solution p, must satisfy equation (3.2)) the radiation 

3.1. The extended problem 

It will now be shown that the extended solution, p ,  as defined by equations (3.2), 
(3.3) and (3.4) is identical to  the solution q5 of the following boundary-value problem: 

as y+ CQ, + satisfies the radiation or boundedness condition; (3.6) 

Here g,(s), s = ex, will be related to the multiple scales expansion (2.4) below. Equa- 
tions (3.5), (3.6) and (3.7) constitute a well-defined boundary-value problem whose 
solution is unique. Since equations (3.5) and (3.6) are identical to equations (3.2) and 
(3.3) the hypothesis that q5 = pe for y > y,,, could be proved if it could be shown that 
q5 possesses an asymptotic expansion which is identical to  the right-hand side of 
equation (3.4) for y slightly greater than ym. To show this the above boundary-value 
problem will be solved for q5 explicitly in the form of a multiple-scales asymptotic 
expansion. Let q5 be given by 
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Substitution of (3.8) into (3.5) and partitioning terms by powers of B leads to the follow- 
ing set of equations: 

a2$n/ay2 - [a2 - M 2 ( u  - $n = zn(#n--l, $n-2) n = 0,1,2, . . . , (3.9) 

where $.-.2 = 
boundary conditions on $n are found in (3.6) and (3.7), namely 

= 0 and the functional form of Xn($n--l, $,-,) is given by (2.10). The 

as y -+ 00, $n is bounded, (3.10) 

on Y = 0, $n = gn(S)* (3.11) 

Two linearly independent solutions of the corresponding homogeneous equations of 
(3.9) are, exp[-hy] and exp[hy] where h is given by (2.16). For n = 0, X o  = 0 in 
(3.9) so that the solution $o which satisfies boundary conditions (3.10) and (3.11) may 

(3.12) 
easily be shown to be $o = go(s) e-hg. 

For n 1 the solution of the inhomogeneous equation (3.9) and boundary conditions 
(3.10) and (3.11) may again be determined by the method of variation of parameters. 
It is readily shown that 

Now setting 
and for n >, 1, 

(3.14 b)  

the two expressions on the right-hand sides of (2.31) and (3.13) are identical. Thus 
$n = j3n in the region y slightly greater than ym. That is, $ satisfies the inner boundrtry 
condition (3.4). Thus the extended solution pe  is equal to the solution $ (for y >, 3,) 
of the boundary-value problem defined by (3.5), (3.6) and (3.7). 

3.2. Uniformly-valid asymptotic expansion of the extended problem 

Having shown that the extended solution, p,, is given by the solution of the boundary- 
value problem defined by (3.5), (3.6) and (3.7) a uniformly valid expansion of the 
extended solution for y > ym is constructed. The solution of the boundary-value 
problem (3.5) to (3.7) is unique. However different methods of solution would yield 
solutions of different forms which may or may not be uniformly valid for y > ym. At 
large distances from the mixing layer the disturbances mainly consist of acoustic 
waves. Unlike waves in the mixing layer whose amplitude changes slowly in the x 
direction as compared with they variation the acoustic waves have no such distinction. 
Thus to seek a solution valid for large y the slow variable s = ex must not be used, 
rather x and y must be treated on an equal footing. Thus a solution will be sought by 
the method of Fourier transforms. 

The Fourier transform and its inverse are defined by 

a0 

f ( k )  = 1/2n/m f(x)e-ik"dz; f ( x )  =I f (L)e ikz&k.  (3.15) 
- W  - w  
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' t  

X 

FIGURE 2. Co-ordinates for acoustic far-field solution. 

Applying the Fourier transform to (3.5) to (3.7) and setting q5 = $(x, y) exp [ - iwt] it  
is easy to find that the Fourier transform of 6, $, is given by the solution of 

d2$/dy2+ [M2(w - k)2- k2] $ = 0 (3.16) 

and, a t  y = 0, (3.17) 

where g,(k) = 1/2n (" gn(ex) eie(z)-ikzdx. (3.18) 
J --oo 

The solution of (3.16) and (3.17) which also satisfies the radiation condition is 

W - 
q5 = C sng,(k) exp [ iMw{(  1 - k /w)2 -  (k/Mw)Z}*y], 

Re {( 1 - k / ~ ) ~  - ( k / M o ~ ) ~ } t  > 0. 

( 3 . 1 9 ~ )  

(3.19b) 

- (k /Mw)2]4} = 0 use the branch Im {[( 1 - k / ~ ) ~  - (k /Mw)2]*}  > 0. 

n=O 

where 

If Re{[1 - 
Performing the inverse Fourier transform leads to 

Clearly equation (3.20) is uniformly valid for all y (see also (3.22) below). Therefore it 
provides the proper continuation of the mixing-layer slowly-varying instability-wave 
solution to  the region y > ym in the upper half plane. 

3.3. Acoustic far-Jield solution 

The sound radiation associated with the instability wave can be found by evaluating 
the integrals of equation (3.20). I n  evaluating the far-field solution polar co-ordinates 
( r ,  0) will be used as shown in figure 2, where x = rcos0, y = rsin0. Equation (3.20) 
may be rewritten as (noting that q5 is the fluctuating pressure which will be written asp) 

p(r, 8, t )  = 2 en g,(k) exp [ i ( [M2(w - k2]* sin 6+ k cos 6) r - iwt] dk. 
(3.21) n=O Sm - W  
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In  the limit r -+ a, the integral can be evaluated by the method of stationary phase. 
This gives, 

where 

x exp [iw (M[ 1 - M sin2 614 - M2 cos 6)( 1 - M 2)-1 r] exp [ - iwt - tin], (3.22) 

Gos e 
( l -M2~in2/ j )4-~) ’  

from which the directivity pattern of acoustic radiation, D(6),  can be calculated: 

77Mw co 

D(6) = lim *rlpI2 = ( 1  -M2sin2t?)~l,,?!~ 
T+ m 

(3.23) 

Since B is small, for practical purposes only the first term of the sum in equation (3.23) 
matters. From equations (3.14) and (3.18) 

(3.24) 

(3.25) 

for: 0 < 6 < m, if M < 1 ;  0 < 6 < sin-l[M-l] if M > 1. 

radiation in the lower half-plane or stationary medium, to the zeroth order, is 
Similarly it is straightforward to show that the directivity pattern of acoustic 

D(6) = ~ w M [ ~ o ( u M c ~ s 6 ) ~ 2 ~ i n 2 6 ,  
for -n < 6 < 0. 

(3.26) 

4. Numerical results 
In  this section the results for the instability-wave characteristics and the far-field 

noise radiation are presented. The mean velocity and the numerical procedure for 
calculating the disturbance growth by the method of multiple scales are described. The 
properties of damped inviscid waves are also discussed. Calculations are presented for 
both subsonic and supersonic free-stream Mach numbers. 

4.1. The instability-wave solution 
The mean velocity. The description of the mean velocity is based on experimental 
measurements in turbulent shear layers. The axial and transverse mean velocities 
are given by 

(4.1) 

} (4.2) 

i 0, (7 -70) < - 6-09 

U = 0.5[1 +erf(7-ro)], - 6.0 < (7 -rl0) c 6.0, r 1, (7-ro) 2 6-02 
and 

~.lir,[erf(r - 7,) - 11 - exp C - (7 - 70)2~/2n4 (7 - 7 0 )  < 6.0, V = (  
0, (r - 7 0 )  2 6.0. 

The complementary error-function profile (4.1) was found to provide a good fit to the 
axial velocity distribution for a wide range of Mach numbers in the initial mixing 
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region of a round jet by Lau, Morris & Fisher (1976) .  The value of ?lo, which gives the 
location of the dividing streamline, is taken from Patel (1973)  to be - 0.3 .  The rate of 
spread of an isothermal mixing layer is a function of the free-stream Mach number. 
Since the perturbation parameter, E ,  in the present problem represents the rate of 
spread it will be a function of Mach number. The variation of E with M is taken from 
Lau et al .  (1976) and is given by 

(4 .3 )  

Numerical calculation procedure. With the mean velocity profiles defined the 
amplitude of the pressure fluctuation associated with the instability wave may be 
calculated above and below the layer. Firstly the ‘parallel flow approximation’ given 
by equation (2 .13)  is solved, subject to the boundary conditions (2 .14 ) .  The form of 
the solution in the uniform and stationary fluid above and below the layer respectively 
are easily obtained: 

( N  e--h+q as 7-++00 ( 4 . 4 ~ )  

and (- eA-q  as ~ + - c Q ,  (4 .4b )  

E = (0.165 - 0 * 0 4 5 M 2 ) / d .  

where A, = (k; - M2(P - ko)2)ic, (4 .4c)  

and A- = (k,2-M2P2)*; ( 4 . 4 4  

Re&} > 0. 

The numerical integration is started above the layer and proceeds across the layer to  
Re(7) = 0. A second integration is started below the shear layer and continues to 
Re (7) = 0, where the two solutions are matched. The matching of the two solutions 
leads to  a determinant which must be equal to zero to  obtain the eigensolution. I n  
practice this is done by minimizing the absolute value of the determinant. The contour 
of integration as discussed in appendix B must always be below the critical point, 
T,, where U = P/ko ,  for the mean velocity profile, equation (4 .1 ) ,  so that the damped 
inviscid solutions are correctly obtained. The indentation of the integration contour 
in the complex 7 plane lies on three straight lines joining the points, [Re (vC) - 1 ,  01, 
[Re (7,) - 1 ,  Im (7,) - I], [Re (7,) + 1, Im (7,) - 11, and [Re (ve) + I, 01. The indentation 
of the contour into the complex 7 plane occurs whenever Im (7,) < + 1 .  Further 
discussion of the damped inviscid solutions is given in appendix B and $4 .2 .  An 
inverse Lagrangian interpolation is used to minimize the determinant in the eigen- 
value search. Once the eigenvalue is found the eigenfunction, c, hence, the adjoint 
solution, $, is readily obtained since $ = c /p2 .  The eigenfunction is normalized such 
that = e--A+? above the layer. The terms, h, and h, of equation (2 .23)  are then cal- 
culated and dko/d/3 is given by 

3 = -1 h, 
dP - m  --oo 

O0 hl$d7 = -12/I l .  (4 .5 )  

The solution of the inhomogeneous equation for ac/a/3, equation (2 .23 ) ,  is then cal- 
culated using the same integration contour and the integrals in (2 .21)  may also be 
found. Equation (2 .21)  may then be used to  evaluate A-ldAldP. 

Above the layer the solution for the fluctuating pressure may be written 

~ ’ ( 7 ,  p) = A ( @ )  e-A+v+W;c)--iwt ( 4 . 6 ~ )  
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Exact solution Numerical solution 

1.0 (1.0000 + 1.5377 x 10%) 

4ni (5.4219 x 12.566i) 
- (4  + 2ni) - (4.0003 + 6.2832i) 

27r( n + 2i) 

( 4  + n*) (1.4232 + 0.90604 

TABLE 1.  Comparison of exact and numerical solutions, P = 0.5. 

and below the layer the solution is 

( ~ ‘ ( 7 ,  P )  = C(P) A(P)  ex-+e(z)-iot. _- (4 .6b )  

Thus the corresponding equivalent rates of change of the pressure are given by 

( 4 . 7 ~ )  
c w d A  EY 

= ia+- ---“a+M2(w-a)] 
A dP A+ 

(4 .7b )  

The growth rates of the pressure fluctuation are clearly functions of distance from the 
layer, y. This functional dependence is due to the changing shape of the eigenfunctions 
with downstream distance. However the effect of the last term in equation (4.7) is 
negligible if regions close to the edge of the layer are considered. The growth rate and 
wavenumber of the slightly diverging flow are then given respectively by the real 
and imaginary parts of the remaining terms of the right-hand side of equations (4 .7) )  
that is 

and 

BW d A  
ia+ 2: ia+- - 

. E W d C  
za- N za+ + - - . 

A dP 

c dP 

( 4 . 8 ~ )  

( 4 . 8 b )  

Numerical accuracy. As a first check on the numerical accuracy of the calculation 
method, the numerical results were compared with a known exact solution. For a 
mean velocity profile of the form 

U = 0.5[1+ tanh (7 - 7,)], (4.9) 

the eigensolution, using the normalization employed above is 

k = 1.0, /3 = 0.5, M = 0.0, 

= 0.5 sech (7 - v,), 
$ = 2 sech (7 - ro)/tanh2 (7 - 7,). 

The integrals in equation (4.5) may then be evaluated analytically. The comparison 
of the numerical and analytical solutions are shown in table 1 .  

Numerical calculations of the instability wave solution have been performed for the 
incompressible case, M = 0, and for M = 0.75, 1.25 and 1.75. The ‘parallel flow 
approximation’ to the local growth rate, given by - Im {k,} is shown in figure 3 as a 
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FIGURE 3. Variation of local parallel-flow growth rate with local frequency. 
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FIGURE 3. Variation of local parallel-flow growth rate with local frequency. 
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FIGURE 4. Variation of local parallel-flow wavenumber 
with local frequency. For symbols see figure 3. 
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Local frequency, fl 

FIGURE 5. Variation of local ‘ diverging-flow’ growth rate with local frequency. Below layer: 
---, M = 0 ;  - - - - -, M = 0.75;  - - -, M = 1.25; - - - -, M = 1.75. Above layer: --, M = 0. 

function of the free-stream Mach number. It should be noted that in the parallel flow 
approximation the growth rate is independent of the transverse location in the shear 
layer. As the free-stream Mach number increases the local growth rate decreases. This 
was also noted by Gropengieser (1969) and Michalke (1971). The variation of the 
parallel flow approximation wave number is shown in figure 4. At lower frequencies 
increasing the Mach number increases the local wavenumber which results in a d?crease 
in the phase velocity. The reverse occurs a t  higher local frequencies though in this 
region the waves are decaying. The local growth rates which are determined from 
equation (4.8) are shown in figure 5 .  The divergence of the flow is seen, by comparison 
with figure 3, to increase the growth rate. The maximum growth rate for the pressure 
below the layer for M = 0, is 50 per cent higher than the maximum growth rate 
obtained using the locally parallel flow approximation. The growth rates above and 
below the layer are shown for the M = 0 case only. The pressure wave above the layer 
is seen to grow for a broader range of local frequencies (thicknesses) though the 
maximum growth rate is greatest below the shear layer. The ‘diverging-flow’ wave- 
numbers are shown as a function of local frequency in figure 6. At high frequencies the 
flow divergence increases the wavenumber and hence reduces the phase velocity. At 
low frequencies there is a reduction in the local wavenumber which results in the 
occurrence of very high phase velocities. There is an indication that a t  sufficiently 
low local frequencies and Mach numbers upstream wave propagation may occur. 
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FIGURE 6. Variation of local ' diverging-flow ' wavenumber with local frequency 
below the shear layer. For symbols see figure 3. 

4.2. Inviscid damped wave solution 

It has been suggested that in a slowly-varying inviscid flow only the growth of waves 
can be followed and that for decaying modes there may not exist any continuous 
solution to the inviscid equations of parallel flow (Lin 1955, ch. 8; Betchov & Criminale 
1967, p. 80). In appendix B the correct procedure for constructing the inviscid damped 
wave solution is discussed. In order to demonstrate that the damped inviscid solutions 
obtained by analytic continuation in the complex plane as described in appendix B 
and above are valid for this problem the corresponding viscous flow analysis will be 
performed for the incompressible, M = 0, case. It will be shown that the viscous 
solutions tend to the inviscid solution as the Reynolds number increases for damped 
viscous and inviscid waves. 

The linearized viscous equations corresponding to the inviscid equations (2.6) for 
the zeroth-order fluctuations (or the parallel flow approximations) for incompressible 
flow are, 

ik, 2, + 0; = 0, (4.10a) 

and 

(4.10b) 
dU 1 

d v  
- i/!?a0 + -a, + ik, B0 = {C," - k; a,} 

(4.10 c) 1 All 
- ips, + = {v, - kt 8,,}, 
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FIGURE 7. Effect of Reynolds number on growth rate, 

M = 0. - - - -, inviscid solution. 

0.6 

where the local Reynolds number, R = @*s/v. This set of simultaneous equations 
may be solved directly for the eigenvalue k, and the functions @,, 0, and 9,. In  the 
present analysis a single fourth-order equation for 8, (the Orr-Sommerfeld equation) 
was obtained in the form, 

(4.11) 

Equation (4.11) may be integrated numerically subject to the boundary conditions 

8,=0;+0 as q-++m. (4.12) 

The eigenfunction for the pressure can be obtained in terms of 8, and its derivatives 
from (4.10). The linear independence of the solutions is preserved using an ortho- 
normalization procedure at  a number of steps within the range of the numerical inte- 
gration. The numerical procedure is the same as that used by Morris (19763). The 
calculated growth rate, - Im (k , ) ,  is shown in figure 7 for several values of Reynolds 
number. The corresponding variations in the real part of the wavenumber, Re (k,), are 
shown in figure 8. As the Reynolds number increases so the eigenvalues approach the 
inviscid solution. This is the case for both growing and damped waves. However, in the 
present analysis, it is the eigenfunction that must be calculated in order to evaluate 
the integrals required in the multiple-scales asymptotic solution. In order to compare 
the inviscid and viscous solutions for damped waves over the entire range of integration 
the viscous solution was obtained by integrating on the same contour in the complex 
7 plane as used in the inviscid solution. The viscous eigenfunction obtained on the 
complex contour was found to be identical to that obtained by integration along the 
real 7 axis where the two contours were coincident. The eigenfunction obtained for a 
Reynolds number, RIP = 500, and a local frequency, p = 0.6 (which corresponds to a 
damped wave) is compared with the corresponding inviscid solution in figure 9. Parts 
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FIQURE 8. Effect of Reynolds number on the real part of the 
wavenumber, M = 0. - - - -, inviscid solution. 

(a )  and ( e )  of the Figure are on the real 7 axis and parts (b) ,  ( c )  and ( d )  are in the complex 
7 plane. The eigenfunctions are both normalized such that p = exp [ - k, 71 a t  9 = 6.0 
which is the upper limit of the numerical integration. The two solutions, viscous and 
inviscid, are almost identical, the difference being almost impossible to  show graphic- 
ally. Typical values for the two solutions are given in table 2 a t  various locations on 
the complex contour. Thus we have shown that the inviscid analysis provides a valid 
approximation to the viscous analysis, for even moderate local Reynolds numbers, 
and that the validity of this approximation includes damped inviscid waves. 

Now that it has been shown that the inviscid-wave model is valid during both the 
growth and decay of the wave in the present analysis, the far field noise radiation, 
which is intimately connected with this growth and decay process, will be calculated 
in the next section. 

4.3. Far-jield noise radiation 

I n  3 3 i t  was shown how the multiple scales expansion for the pressure fluctuations 
in the shear layer may be extended into the acoustic far field. The wavenumber 
component spectrum of these fluctuations in the near field will now be examined and 
the far-field directivity patterns for both subsonic and supersonic free-stream velocities 
will be calculated. 

The far-field noise radiation, given in (3.25) and (3.26) is seen to depend on the 
amplitude of &(k) evaluated at the stationary point of the integral of (3.21) (for 
radiation into the uniform stream). g,(k) is the Fourier transform of the quantity 
A,, (ex) exp [iO(x)] and may be regarded as the wavenumber component spectrum 
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-3.0 -2.0 -1.0 0 -1.0 0 1.0 -1.0 0 2.0 3.0 

Re (1)) Im (1)) Re (17) Im (1)) Re (1)) 

FIGURE 9. Comparison of viscous and inviscid eigenfunctions, M = 0, R = 300, /I = 0.6. (a) 
I m ( q )  = 0; ( b )  Re(7) = -0-9506; (c) Im(7) = - 1.0625; (d )  Re(7) = 1.0494; (e) Im(7)  = 0. 
Inviscid solution: - , real part; - - - -, imaginary part. Viscous solution: - --, real part; . . . - ., 
imaginary part. 

T Inviscid Viscous 

- 0.9506 (0-2904+0.0115i) (0.2910 - 0.8 x 10-4i) 
( - 0'9506 - 1'0625i) (0.1712-0.3673i) (0.1737- 0'369%) 

- 1.0625i (0.9865 - 0.0008i) (0.9763 - 0.0071i) 
(1'0494- 1.0625i) (0.1480 + 0.2977i) (0.1516+0.2926i) 

1.0494 (0'2867 - 0.022li) (0.2889 - 0'0259i) 
TABLE 2. Comparison of viscous and inviscid damped eigensolutions. 

associated with the axial variation, in amplitude and phase, of the pressure fluctua- 
tions. Denoting this pressure fluctuation by G+(x) and G-(x) above and below the 
shear layer respectively it can be seen from equation (4.8) that  

1 dG+ 1 dG- . 
G ,  dx G- dx 

= ia, and -- = %a-. -- (4.13) 

These equations may be integrated numerically. The initial conditions for the 
integration are 

x0 = l/c, G, = 1.0, G- = C,, (4.14) 

13: is taken to  be 6 ,* /d ,  where 8: is thevorticity thickness, and the value of C,isobtained 
from the local eigensolution for the initial local frequency. The axial variation of 
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FIGURE 10. Variation of pressure amplitude below shear layer with axial distance, o = 0.05. 
_ - _ _  , M = 0.75; - - -, M = 1.25; - - -  -, M = 1.75. 

G-(x) as a function of free-stream Mach number for a fixed real frequency, w = 0.05, 
is shown in figure 10. As the Mach number increases so the location of the peak ampli- 
tude moves further downstream. The location of the peak corresponds to the neutrally 
stable condition. Although the local frequency for a neutral solution decreases with 
Mach number, see figure 5, the spread rate of the shear layer decreases with Mach 
number, the net effect moving the neutrally stable point further downstream. The 
rate of growth of the fluctuation is more rapid than its decay rate. The initial growth 
rate is higher for the lower Mach numbers which can also be seen in figure 5. The axial 
variation in G-(x) as a function of frequency for a fixed Mach number of 1.75 is shown 
in figure 11. As the frequency decreases so the location of the amplitude peak moves 
downstream. The peak amplitude also increases as the frequency decreases. These 
effects are a result of the similarity of the basic flow profile. The cycle of growth and 
decay of the pressure fluctuations plays a crucial role in the noise-radiation mechanism. 
The amount of energy that radiates noise depends on the amplitude of the axial wave- 
number component spectrum associated with the pressure fluctuations. In  this paper 
far-field noise radiation calculations will only be presented for radiation into the 
stationary medium, namely, below the layer. The wavenumber component spectrum 
for G J x )  given by 

(4.15) 
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9 

Axial distance, ( x  - x,) 

FIGURE 11. Variation of pressure amplitude below shear layer with axial distance, M = 1.75. 
-, u = 0.005; - --, u = 0.015; - - - - -, u = 0.05; - ---, u = 0.15. 

was calculated numerically using the FFT algorithm described by Brigham & Morrow 
(1967). The amplitude and phase of go-(k),  for w = 0.05 and M = 1.75 are shown in 
figure 12. The spectrum was found to be insensitive to the number of points used in 
the transform and the method of truncating the value of G J x )  for x < xo and large 
values of x. This spectrum exhibits features which are characteristic of all the cal- 
culated spectra. The dominant peak in the spectrum occurs a t  a wavenumber which 
gives a corresponding phase velocity of approximately one half the free-stream 
velocity. 

The directivity patterns of radiated noise are readily obtained using equation (3.26). 
The directivity patterns for several frequencies are shown in Figure 13 for M = 1.75. 
The levels are arbitrarily normalized with respect to the peak level for w = 0.005. The 
noise radiation peaks at 20 degrees to the axis of the shear layer in the ambient 
medium. The radiation patterns for all frequencies are similar. This reflects the basic 
similarity of the shear layer itself where, except a t  the highest frequencies which will 
be strongly influenced by the initial shear layer thickness, the development of each 
frequency wave is similar. As the frequency decreases so the relative sound pressure 
level in the far field increases. Since the shear layer is infinite in the downstream 
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FIGURE 12. Wevenumber component spectrum, go-(k), o = 0.05, M = 1-75. 
(a) Amplitude; (a) phase. 

direction the lower the frequency of the wave the greater will be its peak amplitude 
in the near and far fields. For an experimentally generated shear layer or the mixing 
region of an axisymmetric jet there will be some non-extreme frequency which will 
give the greatest amount of radiated noise. 

The radiated noise as a function of Mach number is shown in figure 14 for a frequency 
of w = 0.005. The normalization is the same as in figure 13. For the M = 1.25 case the 
noise radiation peaks a t  12 degrees to the shear layer axis, while there is no discern- 
ible peak for the M = 0.75 case. The ripples that, occur for the two lowest Mach 
numbers reflect the limitations of the accuracy of the description of G J x )  and its 
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FIGURE 13. Far-field noise directivity patterns, M = 1.75. 
- , w = 0.005; ---, w = 0.015, - - - - -, w = 0.05. 

Fourier transform and are discussed below. The noise radiation from the large-scale 
structure with its characteristic peak close to the downstream axis is seen to become 
increasingly efficient as the Mach number increases. As can be seen from equation 
(3.26), the directivity patternin the far field is governed by the wavenumber com- 
ponent spectrum amplitude as a function of wavenumber and a sin28 weighting 
factor. For Mach numbers such that the peak energy wavenumbers do not radiate 
noise, that is for M < 2, the location of the peak radiation angle is dominated by 
the sin2i3 weighting factor. For higher Mach numbers, the peak will depend more 
on the peak amplitude wavenumber of the wavenumber component spectrum, 
i.e. OD,,, N cos-1 ( 2 / M ) :  M > 2, though the sin2 8 factor will prevent the peak angle 
from occurring at  less than 20 degrees. 

Returning to the ripples on the directivity patterns for M = 1.25 and 0-75 in 
figure 14, it should be recalled that only those wavenumber components of the pressure 
fluctuation at the edge of the flow field which have a sonic phase velocity to some 
location in the far field can radiate noise. The lower the free-stream Mach number, 
the smaller is the wavenumber bandwidth that can radiate noise and the further these 
wavenumbers will be from the peak amplitude number. The amplitude of the wave- 
number component spectra for w = 0.05 and various Mach numbers is shown in 
figure 15. The arrows indicate the range of wavenumber components that contribute 
to the noise radiation, For the higher Mach number, a significant portion of the energy 
is radiated. However, the region that radiates noise in the subsonic case is far from 
the peak amplitude wavenumber. The amplitude of components that do radiate at 
M = 0.75 are a factor of lo3 below the peak level at  that frequency and are thus very 
sensitive to the exact description of the pressure fluctuations in the near field. Thus, 
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FIG~RE 14. Far field noise directivity patterns, w = 0.005. 
----, M = 1.75; ---, M = 1.25; - - - --, M = 0.75. 

though a mechanism by which the large-scale fluctuations in the subsonic shear layer 
radiate noise has been demonstrated, the calculated radiated noise level should be 
regarded with caution. The calculated directivity patterns for the supersonic shear 
layers, however, do have quantitative significance. 

5. Concluding remarks 
In  this paper it has been demonstrated how the multiple-scales asymptotic expansion 

for an instability wave in a turbulent shear layer may be continued to large distances 
from the shear layer. The extended solution has been used to calculate the noise 
radiation associated with the instability wave. The same technique may, of course, be 
applied to other configurations such as jets, wakes, boundary layers, etc. The multiple- 
scales expansion was used to take account of the small divergence effect of the mean 
flow. Although locally this effect is small, from a global point of view, it is extremely 
important. First of all, it is this growth of the mean flow that causes any initially 
unstable wave to be ultimately damped out far downstream. This effectively removes 
the problem of unstable waves attaining unbounded amplitudes as the parallel flow 
approximation would imply. Secondly, as a result of this spatial growth and decay 
of the wave amplitude, the wavenumber spectrum of a discrete frequency wave is 
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broadband instead of discrete. Since only the part of the broadband wave spectrum 
with supersonic phase velocities could lead to radiation of sound, this feature is crucial 
to the problem under consideration. 

I n  $ 4 ,  the numerical results suggest that noise generated by instability waves could 
be very important for supersonic flow and that noise is predominantly radiated to 
angles quite close to the direction of flow. This is in agreement with the experimental 
observations of McLaughlin et al. (1977) and Dosanjh & Yu (1968). However, it is 
necessary to  point out here that the present two-dimensional shear-layer model does 
not simulate fully an axisymmetric jet flow. I n  a real jet, the mean flow consists of 
three distinct regions. Close to  the jet exit the flow comprises a uniform core surrounded 
by a mixing layer. At about four to five diameters downstream of the nozzle exit for 
subsonic jets and further downstream for supersonic jets, the mixing layers merge to 
form a short transition region. I n  this region, the flow undergoes certain adjustments 
and develops still further downstream into a self-similar flow generally referred to as 
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the fully-developed region. Oying to these changes in mean flow characteristics, it is 
expected that the corresponding wave spectrum would be much broader and with 
more supersonic phase velocity components. This, in turn, suggests that the instability- 
wave noise-generation mechanism is probably more effective in jets than in plane 

s&&c Iayers. T~%Y%~QSQ, tks! -yxe%en\ nxrne+icA results, espe6ially those on subsonic 
flows, should not be used to draw firm conclusions with regard to noise associated 
with jets. Some preliminary calculations have been made by the authors for the 
noise radiation by instability waves in supersonic jets, using the technique described 
in this paper. The results show close agreement between measured and calculated 
near- and far-field sound pressure levels. 
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Appendix A 
The coefficients, Bi, in (2.21) are given by: 

6, = - 2i/3[M2U/9+ k,]; 
2iB2 d U .  
/P d y ’  

B --- 

B, = i(M2U2- 1)p; 
B 2iup2 d U .  

4 -  8” d y ’  

2k:(lc, U - /?) d V . --I7 k,(l-M2U2)+kOM2 8” d r  

The functions h, and h2 in (2.23) are given by 

and 

Appendix B. Inviscid damped-wave solution and integration contour 
The purpose of this appendix is to clarify two outstanding questions concerning 

damped-wave solutions of an inviscid fluid as used in 3 2. Firstly, it has been pointed 
out (Lin 1955, ch. 8) that the limiting damped-wave solution of the Orr-Sommerfeld 
equation does not satisfy the inviscid Orr-Sommerfeld equation over the entire 
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interval of the real axis which corresponds to  the physical domain of the problem. 
Thus extreme care must be exercised in selecting the mathematically- and physically- 
correct solution of the inviscid model. Secondly, the integrals of (2.20) and (2.21) 
which arise because of the imposition of a solvability condition on the slightly non- 
parallel flow solution can no longer be carried out along the real y axis as the eigen- 
function [ is not completely defined there. Tn the past, the first question has been 
resolved by appealing to the effect of viscosity as discussed by Lin (1955) and im- 
plemented numerically by Mack (1965). Here two slightly different ways of dealing 
with both questions without invoking viscous effects will be presented. It is believed 
that these analytical approaches, in addition to serving as a complement to the 
numerical verification study of the inviscid damped-wave solution discussed in § 4.2, 
can actually offer some insight into the physics of the problem. 

B 1 Wave propagation approach 

This approach is an extension of that given in the appendix of Tam (1975). Here the 
basic idea is to follow the actual propagation of a hydrodynamic wave from the 
initial region of the mixing layer where i t  is unstable to the downstream region where, 
because of the increase in mixing-layer thickness, it becomes damped. It is well known 
that the ineiscid Orr-Sommerfeld problem, equations (2.13) and (2.14), gives mathe- 
matically- and physically-correct unstable solutions (of course only as a large- 
Reynolds-number approximation). Thus the correct inviscid damped wave solution 
can be found as the analytic extension of the unstable solution as the mixing-layer 
thickness parameter 5 increases, Equation (2.13) is a second-order differential equation 
with a regular singular point a t  7,.(s) where = P(s)  - E ,  U(7,) = 0. This point has 
been referred to as a critical point by Lin (1955) in considering the full fourth order 
Orr-Sommerfeld equation. A simple Frobenius series analysis (Boyce & DiPrima 
1977, ch. 4) shows that the indicia1 equation has two roots which differ by an integer 
so that the general solution has a logarithmic singularity a t  ~ ~ ( 8 ) .  For the mean flow 
profile given by equation (4.1) the critical point q,(s) lies above the real 7 axis for an 
unstable wave as shown in figure 16 (a ) .  Since the inviscid unstable solution is valid 
for all values of 7 along the real axis, the branch cut of the logarithmic function of 
the solution must extend from 7,. to infinity in the upper-half 7 plane. Without loss 
of generality one can choose the branch cut to be parallel to  the imaginary 7 axis as 
shown in figure 16(a). Now as the unstable wave propagates downstream the para- 
meter s increases so that ~ , ( s )  moves toward the real 7 axis and eventually crosses it 
into the lower half-plane when the wave becomes damped. Now to preserve analyticity 
of solution, i.e. the inviscid damped-wave solution must be the analytic continuation 
of the inviscid unstable wave solution, the contour of integration must be deformed 
so as to remain below the branch cut as shown in figure 16 ( b ) .  This contour deformation 
applies to the integration path for the eigenfunction [ as well as to the integrals of 
(2.20) and (2.21). For an inviscid damped wave the value of the eigenfunction on the 
two sides of the branch cut along the real axis will not be the same. That is the eigen- 
function is discontinuous a t  the branch cut. It has been pointed out by Tam (1975) 
that physically for an inviscid fluid the branch cut represents a critical layer of infini- 
tesimal thickness. The discontinuity across this layer would be smoothedout if viscosity 
or other diffusive mechanisms were taken into account. I n  that case the thickness of 
the critical layer would be finite. 
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B 2 Initial-value approach 

An alternative way is to consider the inviscid Orr-Sommerfeld problem as an initial 
boundary-value problem (see Dikii 1960; Tam 1971, 1978). In  this case by applying 
a Laplace transform to t the mathematical problem reduces formally to the same 
one as before, namely, consisting of (2.12) and (2.14). The only difference is that 
w ( p  = ws) is now the complex-Laplace-transform variable. To satisfy the causality 
condition the relative positions of all the contours of integration and singularities are 
to be determined by first setting the inverse Laplace transform contour above all 
poles and singularities of the integrands in the complex w plane as shown in figure 17. 
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Since w in (2.13) and (2.14) represents a value of w on this inverse transform contour, 
the relative positions of the branch cut of the logarithmic function of the solution and 
integration contours for [and equations (2.20) and (2.21) are, therefore, to be decided 
with Im ( w )  set equal to a large positive value initially. For the problem a t  hand it is 
straightforward to find that the branch or critical point yc lies above the real y axis 
and hence it is also above the contours of integration. Now to obtain a solution with 
Q equal to a positive real value, the inverse transform contour can be deformed to the 
real w axis. When this process of contour deformation is being carried out the branch 
point in the complex y plane moves towards the real axis. For an inviscid damped 
wave ye would actually move below the real axis so that to preserve analyticity all 
the contours of integration in the ?;r plane which originafly were along the real axis 
must now be deformed below this point as shown in figure 16(b). In  SO doing the 
solution obtained by the wave propagation approach above is, once again, recovered. 

It is to be noted that the above discussion is based on the implicit assumption 
that the inviscid fluid model can, if the appropriate discontinuity is inserted when 
necessary, give a reasonably good, physically realizable, overall description of the 
instability-wave problem. This is reminiscent of the use of weak solutions (with 
shocks and discontinuities) in supersonic gasdynamics and the analytic continuation 
solution in plasma kinetic theory involving Landau damping. However, it has not 
been proved (but has been demonstrated numerically in $4.2) that the damped 
inviscid solution is the limit of the solution of the Orr-Sommerfeld equation as the 
Reynolds number tends to infinity. Such a proof, although essential for mathematical 
rigour, is beyond the scope of this paper. 
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